Joint Approximation of Information and Distributed Link-Scheduling Decisions in Wireless Networks
نویسندگان
چکیده
For a large multi-hop wireless network, nodes are preferable to make distributed and localized link-scheduling decisions with only interactions among a small number of neighbors. However, for a slowly decaying channel and densely populated interferers, a small size neighborhood often results in nontrivial link outages and is thus insufficient for making optimal scheduling decisions. A question arises how to deal with the information outside a neighborhood in distributed link-scheduling. In this work, we develop joint approximation of information and distributed link scheduling. We first apply machine learning approaches to model distributed link-scheduling with complete information. We then characterize the information outside a neighborhood in form of residual interference as a random loss variable. The loss variable is further characterized by either a Mean Field approximation or a normal distribution based on the Lyapunov central limit theorem. The approximated information outside a neighborhood is incorporated in a factor graph. This results in joint approximation and distributed link-scheduling in an iterative fashion. Link-scheduling decisions are first made at each individual node based on the approximated loss variables. Loss variables are then updated and used for next link-scheduling decisions. The algorithm repeats between these two phases until convergence. Interactive iterations among these variables are implemented with a message-passing algorithm over a factor graph. Simulation results show that using learned information outside a neighborhood jointly with distributed link-scheduling reduces the outage probability close to zero even for a small neighborhood.
منابع مشابه
Joint Estimation of Information and Distributed Link-Scheduling in Wireless Networks: Mean-Field Approximation and Graphical Models
In a large multi-hop wireless network, nodes are preferable to make distributed link-scheduling decisions with information exchange only among a small number of neighbors. However, for a slowly-decaying channel and densely-populated interfering nodes, a small size neighborhood often results in nontrivial link outages and is thus insufficient for making optimal scheduling decisions. A question a...
متن کاملA JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS
Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملAssessment of DSACC and QPART Algorithms in Ad Hoc Networks
The rapid advancement in wireless over wired has augmented the need for improving theQuality of Service (QoS) over such wireless links. However, the wireless ad hoc networkshave too low bandwidth, and establishing a QoS in these networks is a difficult issue. So,support of quality of service in ad hoc networks is the topical issue among the networkscience researchers. In this research we are go...
متن کاملFlexible Scheduling of Active Distribution Networks for Market Participation with Considering DGs Availability
The availability of sufficient and economic online capacity to support the network while encountering disturbances and failures leading to supply and demand imbalance has a crucial role in today distribution networks with high share of Distributed Energy Resources (DERs), especially Renewable Energy Resources (RESs). This paper proposes a two-stage decision making framework for the Distribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1201.2575 شماره
صفحات -
تاریخ انتشار 2012